Flagellar synchronization through direct hydrodynamic interactions
نویسندگان
چکیده
Flows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory. At close spacings it produces robust synchrony for thousands of beats, while at increasing separations synchrony is degraded by stochastic processes. Manipulation of the relative flagellar orientation reveals in-phase and antiphase states, consistent with dynamical theories. Flagellar tracking with exquisite precision reveals waveform changes that result from hydrodynamic coupling. This study proves unequivocally that flagella coupled solely through a fluid can achieve robust synchrony despite differences in their intrinsic properties.DOI: http://dx.doi.org/10.7554/eLife.02750.001.
منابع مشابه
Hydrodynamic synchronization of flagellar oscillators
In this review, we highlight the physics of synchronization in collections of beating cilia and flagella. We survey the theory synchronization in collections of noisy oscillators. This framework is applied to flagellar synchronization by hydrodynamic interactions. The time-reversibility of hydrodynamics at low Reynolds numbers prompts swimming strokes that break symmetry to facilitate hydrodyna...
متن کاملFlagellar synchronization independent of hydrodynamic interactions.
Inspired by the coordinated beating of the flagellar pair of the green algae Chlamydomonas, we study theoretically a simple, mirror-symmetric swimmer, which propels itself at low Reynolds number by a revolving motion of a pair of spheres. We show that perfect synchronization between these two driven spheres can occur due to the motion of the swimmer and local hydrodynamic friction forces. Hydro...
متن کاملCell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga.
The unicellular green alga Chlamydomonas swims with two flagella that can synchronize their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not understood. Here, we present realistic hydrodynamic computations and high-speed tracking experiments of s...
متن کاملNonlinear dynamics and fluctuations in biological systems (Habilitation thesis)
Inspired by the coordinated beating of the flagellar pair of the green algae Chlamydomonas, we study theoretically a simple, mirror-symmetric swimmer, which propels itself at low Reynoldsnumber by a revolving motion of a pair of spheres. We show that perfect synchronization between thesetwo driven spheres can occur due to the motion of the swimmer and local hydrodynamic friction forces....
متن کاملA three-sphere swimmer for flagellar synchronization
In a recent letter (Friedrich et al., Phys. Rev. Lett. 109 138102, 2012), a minimal model swimmer was proposed that propels itself at low Reynolds numbers by a revolving motion of a pair of spheres. The motion of the two spheres can synchronize by virtue of a hydrodynamic coupling that depends on the motion of the swimmer, but is rather independent of direct hydrodynamic interactions. This nove...
متن کامل